网站首页 文章专栏 在tensorflow中用多张图实现网络级联
在tensorflow中用多张图实现网络级联
创建于:2018-03-22 16:00:00 更新于:2024-11-22 17:23:48 羽瀚尘 1433
tensorflow tensorflow,python



在一个网络的输入依赖与另一个网络的输出时,就要在tensorflow中同时使用多张图。

使用多张图的起因

如果没有报错,我是懒得使用多张图的。多张图的报错主要是下面这种。
python Tensor(...) must be from the same graph as Tensor

简单地避开多张图

刚开始我只是在验证阶段需要网络的级联,数据只需要在这个级联网络流动一次。所以采用了reset方式避开问题。
python import tensorflow as tf (code to define graph one) (session to run graph one) tf.reset_default_graph() (code to define graph two) (session to run graph two)
查询这个 reset_default_graph() 可以发现,函数功能是Clears the default graph stack and resets the global default graph.

彻底解决问题

我的网络结构是 去噪自编码网络 + CNN识别网络,在简单避开多图问题后,发现CNN的识别效果不理想。仔细看了看中间结果,认为可能是去噪自编码不够好,把原始信号给扭曲了。所以,CNN可能需要学习去噪自编码的输出。那么在DAE的基础上进行训练,就需要数据频繁大量的在两张图中流动,只使用reset不足以解决问题。 直到在一篇博客中发现了多图的建立方法。
”`python
g1 = tf.Graph()
with g1.as_default():
(code to define tensors)
g2 = tf.Graph()
with g2.as_default():
(code to define tensors)
sess_g1 = tf.Session(graph = g1)
sess_g2 = tf.Session(graph = g2)

run sess doesn’t need as_default function

sess_g1.run()
sess_g2.run()
with g.as_default()这个只在定义tensor前使用,sess.run()是不需要的。 如果使用了类似collection之类的把图的结构分离出来定义的,这些被调用的函数也要位于with g.as_default()`控制范围内。

其他

目前只是自己摸索出来的方法,如果发现了更好的技术途径,会及时更新。

Reference:
1. http://blog.csdn.net/aiya_xiazai/article/details/58701092